Using Discriminant Function for Prediction of Subcellular Location of Prokaryotic Proteins

Kuo-Chen Chou and David W. Elrod

Computer-Aided Drug Discovery, Pharmacia & Upjohn, Kalamazoo, Michigan 49007-4940

E-mail: kuo-chen.chou@am.pnu.com

Received September 14, 1998

The discriminant function algorithm was introduced to predict the subcellular location of proteins in prokaryotic organisms from their amino-acid composition. The rate of correct prediction for the three possible subcellular locations of prokaryotic proteins studied by Reinhardt and Hubbard (Nucleic Acid Research, 1998, 26:2230-2236) was 90% by the selfconsistency test, and 87% by the jackknife test. These rates are considerably higher than the results recently reported by them using the neural network method. Furthermore, the test procedure adopted here is also more rigorous. The core of the current algorithm is the covariance matrix, through which the collective interactions among different amino-acid components of a protein can be reflected. It is anticipated that, owing to the intimate correlation of the function of a protein with its subcellular location, the current algorithm will become a useful tool for the systematic analysis of genome data. © 1998 Academic Press

Key Words: organelles; amino-acid composition; self-consistency; jackknife; collective interaction.

The rapidly increasing number of sequences entering into the genome databank has created the need for fully automated methods to analyze them [1]. Knowing the cellular location of a protein is a key step towards understanding its function. Even if the basic function of a protein is known, knowing its cellular location may provide insights as to which pathway an enzyme is involved. The pioneer study by Nakashima and Nishikawa [2] indicated that intra- and extracellular proteins differ significantly in their amino-acid composition. Subsequently two automatic methods for assignment of the subcellular location of proteins according to their amino-acid composition were proposed. One of these [3] is based on Mahalanobis distance [4] which, however, is valid only when the subset sizes in the training dataset are the same or approximately the same [5]; while the other is based on the neural network technique [6] for which it is difficult to give a physical explanation although the results are often successful in practice. For example, as pointed out by King [7], the neural networks methods have "very poor explanatory power" and "they are statistically rather poorly characterized". Nevertheless, in comparison with [3], the dataset constructed by Reinhardt and Hubbard in [6] is one step forward as reflected by the following features: (a) intracellular proteins are distinguished as cytoplasmic or mitochondrial and eukaryotic and prokaryotic sequences handled separately; (b) all transmembrane proteins are excluded because reliable prediction methods for this group already exist [8]; (c) the number of proteins in each subset (subcellular location) is considerably different as reflecting the reality in cells. In view of this, the Reinhardt and Hubbard dataset can be used to examine the effectiveness of a new prediction algorithm.

DISCRIMINANT FUNCTION

Suppose there are N proteins forming a set S, which is the union of m subsets S_{ξ} ($\xi=1,2,\ldots,m$) each representing a subcellular location. The size of each subset is given by N_{ξ} ($\xi=1,2,3,\ldots,m$), where N_{ξ} represents the number of proteins in the subcellular location ξ . Obviously, $N=\sum_{\xi=1}^m N_{\xi}$. The prediction algorithm is based on the correlation between the subcellular location of a protein and its amino-acid composition. Any protein corresponds to a vector or a point in the 20-D (dimensional) space; i.e., it can be described by [9]

$$m{X}_k^{\xi} = egin{bmatrix} m{X}_{k,1}^{\xi} \ m{X}_{k,2}^{\xi} \ m{\vdots} \ m{X}_{k,20}^{\xi} \end{bmatrix}, \ (k=1,\ 2,\ \dots,\ N_{\xi}; \quad \xi=1,\ 2,\ 3,\ \dots,\ m) \quad [1]$$

where $x_{k,1}^{\xi}$, $x_{k,2}^{\xi}$, ..., $x_{k,20}^{\xi}$ are the normalized occurrence-frequencies of the 20 amino acids in the kth

TABLE 1
List of the 997 Prokaryotic Protein Sequences Classified in Three Subcellular Locations as Studied by Reinhardt and Hubbard [6]

SPF_BOOL RFF_BOOL RFF_STAND SRC_SCOLI SPF_BASCE LBU_LACLA LBU_LACLA DLU_LSCOLE SAG_BASCE CP_SECUL SPF_BASCE SPF_BASCE CP_SECUL SPF_BASCE CP_SECUL SPF_BASCE SPF_	(1) 688	Cytoplasmic prokaryotic proteins								
SYT_SPRIND										
SPC_SPUT_ LOSS_ECOLD PRICE_ALCEND PRICE_ALCEND PRICE_BESSED PRICE_BESSED PRICE_SPUT_ RESPECTATION PRICE_BESSED										
PAPER SCOLL SCAL PAPER SPEAR SPEAR SCALE										
SYM_ASPEAL G.PS_SCOIL G.P										
SYS_BACSI SYS							ALKH_ECOLI			
MALD_SPEEN FPEU_SPEEN STYL_RACES PFEU_SPEEN STYL_RACES PFEU_SPEEN STYL_RACES STY		SYC_ECOLI	RNB_HAEIN	SYM_BACSU	XYLA_ECOLI					
GT_SEGLI_ GIMA_SEFC.										
ACER, ROOLI GNC, ROOLI										
SPT_BACSU SPT_BACSU BARE_BACSU SPT_FRESS SURF_BACSU SPT_FRESS SPT_STEEN SPT_ST										
EFFU_STROM MRCS_BESTM BECO_MYCE SIP3_ANNAW SYGE_RAETN SYV_ECCIT TYPR_SCOLI AVE_SALTY FYRE_STROW CALL AVE_SALTY SYCE_BEST AVE_SALTY SYSE_BEST AVE_SALTY AVE_SALTY SYSE_BEST AVE_SALTY AVE										
SYM_PRIED SYM_										
DROG_NYCHO SYR_ARRINE BOOC_PSERS MFC_EOLI SNR_RACN SYR_ARRINE SOC_BACKS SYR_CARRINE SOC_BACKS SYR_CARRINE SOC_BACKS SYR_CARRINE S										XYLA_HAEIN
CIAN_AMSP CIAN_ASOR PTI_STROW PGK_MYCOB SELE_ECOLI SKP_MASOR STE_ECOLI SKP_ASOR STE_ECOLI SKP_										
SPYL_CYTLY SPF1_SALTY SPF										
SYS_COMUS LPIA_MYCOR MOR_ECOLI MOR_										
Pitch Pitc										
GENT_BRILLY OTC_SERIOR DEVC_DEVIN MECT_SALTY GEST_LEPIN OTLA_KLEPN OTLA_K										PGK_THEMA
SPT_BAREN SVT_DASSY CHEE_ECOL_1 FUN_SECOL_1 SVL_BCOL_1 SVL										
GPP_REEND SYY_BACSU CHEZ_ECOL! FROM_BACSU SYZ_HTEMEN CALD_ECOL! SYZ_HTEMEN CALD_ECOL! SYZ_HTEMEN SYZ_HTEMEN CALD_ECOL! SYZ_HTEMEN SYZ_H										
LEUI_LEPIN CILA_KLEPN XYLA_CLOTS CHEM_BASCS XYLA_TERS GINZ_BRAJZ SYN_HAED APPL_STREM_GEN_TOWN ACCES YYLA_TERS SYN_HAED APPL_STREM_GEN_TOWN ACCES YYLA_TERS SYN_HAED APPL_STREM_GEN_TOWN ACCES YYLA_TERS YYLA_TER										
SYE_MYCLE										
STYM_RACOLI						SYT_MYCGE				
PHOH_ROOLI										
XFOFT_RECOLI DECC_RECOL										
SYL_MYGGE HOW_ALCEU SYL_ALCEPE IF2_ECOLI MAPR_CITE EPS_ECOLI MAPR_CITE EPS_ECOLI MAPR_CITE EPS_ECOLI MAPR_CITE EPS_ECOLI MAPR_CITE EPS_ECOLI SCBR_KERE SYP_ELLER SYP_ECOLI END_ALCEU EVS_ENCE EVS_ELLER SYP_ELLER SYP_										
CHILD BACSU										
SCHE_SALTY THROA_BOCID MALZ_ECOLI GIVA_BECOLI FUNK_SCEOLI FUNK_SCE										
SCHE_SALTY THA_BCOLI MALZ_ECOLI GLYA_BCOLI GLYA_BCOLI GLYA_BCOLI GLYA_BCOLI TYSY_BCACE MAD_CLTPR GLYA_BCOLI GLYA_BCOLI MAT_HAND GLYA_BCOLI MAT_HAND MATCHING MATCHING MATCHING MATCHING MAT_HAND MATCHING										
SYPA_MYCOL FPI_BACSU FPI_BACSU SYPA_MYCOL SYPA_		O16G_BACTR								
PAGE PROPAGE										
MMPD_CITTS SPAR_BASCS SYS_MCCC										
HPRT_LACLA										
FTTL STRSI										SYE_BACSU
DECCHAERIN TUTAL SCOLI CAPA_ECOLI XYS2_PSEPU PHOR_PSEAE SYL_MYCCE DECOLIPTION OF THALENO SYL_MACCE SYL_MACCE SYL_MACCE DECOLIPTION OF THALENO SYL_MACCE SYL_MACCE DECOLIPTION OF THE SYL_MACCE SYL_MACCE SYL_MACCE SYL_MACCE DECOLIPTION OF THE SYL_MACCE SY										
DEOC_HAEIN UVRB_MICLU ACRA_RHOFA APT_HAEIN GRAP_THAEIN GRAP_TO_TORK_DEOLI EFTU_MOLSU EFTU_STRRA AGRA_STAAU STAM_COLL EFTU_FETE STREAU STAM_COLL ETTR_BACSU SYD_MYCGE SYG_REOLI ETTR_GRAP_TORK_DEOLI COLL ETTR_BACSU SYD_MYCGE SYM_MYCGE AND ARTHLY SYM_MYCGE COLL ETTR_GRAP_TORK_DEOLI COLL SYM_MYCGE AND ARTHLY SYM_MYCGE COLL ETTR_GRAP_TORK_DEOLI COLL SYM_MYCGE AND ARTHLY SYM_MYCGE COLL ETTR_GRAP_TORK_DEOLI COLL SYM_MYCGE AND ARTHLY SYM_MYCGE COLL SYM_MYCGE COLL SYM_MYCGE AND ARTHLY SYM_MYCGE COLL SYM_MYCGE COLL SYM_MYCGE AND ARTHLY SYM_MYCGE COLL										
Feg Ecoli Feg Spipl Under Kleas Uble Coli Cate Ecoli Feg Haein Clorate Noda Arise Coli Syd Becoli S										
SYH_MYCLE										
PTT_HETH NYORE DCP_SALTY ALKK_PSEOL EFTU_MYCE SYF_THETH NODB_RANTHUN SYF_HAETN SYF_HAET	SYGB_ECOLI						LON2_MYXXA			G6PI_ECOLI
VPM_BHAEIN NOB_RHILU SYR_HAEIN FGK_COGL TREC_ECCLI FFTS_SFICT LON_HAEIN SYW_MYCGE SYR_STREQ TRY_BACFR TR										
THI_MYGE										
MAPD_ECOLI HOME_ALCEU RAS_SALTY SYP_HAEIN STYL_BACSU SYP_HAEIN STYL_BACSU SYP_HAEIN STYL_BACSU SYP_HAEIN STYL_BACSU SYP_HAEIN STYL_BACSU SYP_HAEIN STYL_BACSU SYR_MYCHO SAOX_CORSP CHEW_ENTAE METK_ECOLI SYR_ACIO SYR_MYCHO SAOX_CORSP CHEW_ENTAE METK_ECOLI SYR_ACIO SYR_A										
AMPD_ECOLI HOKH_ALCEU RHAS_SALTY CAPA_HAEIN PTI_ALCEU RAD_BORPE EFTU_DEISP SYY_THIFE KDS_ECOLI SYK_MYCHO SYV_ECOLI HOKH_ALCEU FINZ_RHAEIN SYE_AZOBR RND_HAEIN HOKE_ALCEU FINZ_RHAEIN KAD_BASSU LVY_ECOLI HOKH_ALCEU FINZ_RHAEIN SYE_AZOBR BTUR_ECOLI FINZ_RHAEIN SYE_AZOBR SYE_AZOBR BTUR_ECOLI FINZ_RHAEIN SYE_AZOBR BTUR_ECOLI FINZ_RHAEIN SYE_AZOBR SYE_AZOBR SYE_AZOBR BTUR_ECOLI FINZ_RHAEIN SYE_AZOBR SYE_AZOBR BTUR_ECOLI FINZ_RHAEIN SYE_AZOBR SYE_AZOBR BTUR_ECOLI FINZ_RHAEIN SYE_AZOBR SYE_AZOBR BTUR_ECOLI GLYA_MYCGE SYE_BACST SYE_AZOBR										
HPRT HABIN NINAR_ECOLI IPVR HABIN SYC_HABIN SY										
SYFB_MYGGE EKG_FHETH SLYD_ECOLI GLNA_NEIGO SLYD_ECOLI GLNA_NEIGO GSHR_ANASP GSHR_BGCOLI GSHR_BGCC GSHR_ANASP GSHR_BGCC GSHR_BGCC GSHR_ANASP GSHR_BGCC GANASH GSHR_BGCC GSHR_BGCC GSHR_ANASP GSHR_BGCC GANASH GSHR_BGCC GANASH GSHR_BGCC GANASH GSHR_BGCC GAR_BGCC GSHR_BGCC GSHR_BGCC GSHR_BGCC GSHR_BGCC GSHR_BGCC GSHBBCC GSHR_BGCC GSHR_BGCC GSHR_BGCC GSHR_BGCC GSHR_BGCC GSHR_BGCC										
SYFB_MYGGE EFG_THETH PTLA_STRMU ACKA_ECOLI SYV_BACSU NODA_BRASP SYT_HABIN NODA_ACCA IFI_BACSU OTCA_MYGBG SLYD_ECOLI GLAN_ABIGO PTL_MYCCA PGK_BACME G3P_THEAQ EFG_HABIN GSHR_BURCE XYLA_ACTMI CYSE_ECOLI SERC_HABIN UPPQ_ECOLI DAPD_BCOLI EFTU_ECOLI CATR_PSEPU CHID_ECOLI KAD_HABIN OTC1_ECOLI DTXR_CORDI XYLS_PSEPU TAGD_BACSU SYF_BECOLI SYR_BURCE SYF_BECOLI SYR_BURCE SYF_BECOLI SYR_BURCE SYF_BECOLI SYR_BURCE SYF_BECOLI SYR_BURCE SYF_BECOLI SYR_BURCE SYF_BURCAP HPRT_MYGE AAT_ECOLI DTXR_CORDI XYLS_PSEPU TAGD_BACSU SYR_BURCAP HPRT_MYGE AAT_ECOLI DTXR_CORDI XYLS_PSEPU TAGD_BACSU SYF_BURCAP HPRT_MYGE AAT_ECOLI SYC_MYGE METS_ECOLI SYT_BURCAP HPRT_MYGE AAT_ECOLI SYC_MYGE APPL_ECOLI SYC_MYGE APPL_ECOLI SYC_MYGE APPL_ECOLI SYC_MYGE APPL_ECOLI SYC_MYGE APPL_ECOLI SYC_MYGE APPL_ECOLI SYC_MYGE SYF_BURCAP HPRT_MYGE APPL_ECOLI SYC_MYGE APPL_ECOLI SYC_MYGE APPL_ECOLI SYC_MYGE SYF_BURCAP HPRT_MYGE APPL_ECOLI SYC_MYGE APPL_ECOLI										RUBR_DESVH
SLYD_ECOLI GLNA_NEIGO GNA_NEIGO GSHR_ANAPS G3P_ANAVA G3P_ANAVA G5HR_ANAPS G3P_ANAPS G3P_ANAVA G5HR_ANAPS G3P_ANAPS G										
GSHTANASP G3P1_ANAVA EFTI_STRCO TYSY_MYCTU CHEB_ECOLI EFTU_CHLVI SYH_ECOLI ACKA_HABIN PHEA_ECOLI RIMI_ECOLI UGPO_ECOLI DAPD_ECOLI DAPD_ECOLI CATR_PSEPU CHIO_ECOLI SYT_BUCAP G1P2_ECOLI SYT_BUCAP CYPB_ECOLI SYL_KLEAB RF3_ECOLI SYT_BUCAP HPRT_MYCGE AAT_ECOLI SYC_MYCGE METX_MYCGE CSPB_BACCL ISPA_BACST G3P2_RHOSH TYRA_ECOLI TYRA_ECOLI TYRA_ECOLI TYRA_ECOLI G3P2_BCOLI AGKA_HABIN PROB_ECOLI SYL_MCGE CSPB_BACCU SYL_ECOLI MASY_CORGL SYR_BRELA ARAC_CITRE G3P1_BCOLI KAD_HABIN ROLE COLI SYL_MCGE METX_MYCGE G3P2_RHOSH TYRA_ECOLI TYRA_E										
UGPQ_ECOLI DAPD_ECOLI CATR_PSEPU CHIO_ECOLI KAD_HAEIN OTC1_ECOLI DTXR_CORDI XYLS_PSEPU TAGD_BACSU EFG_ECOLI GLN2_FRAAL CYPB_ECOLI XYLA_KLEAE RF3_ECOLI SYT_BUCAP HPRT_MYCGE ATT_ECOLI SYC_MYCGE METX_MYCGE CSPB_BACCL ISPA_BACST G3P2_RHOSH TYRA_ECOLI IPYR_ECOLI PTHP_ENTFA FRZC_MYXXA SYA_ECOLI IPY_BACSU PTH_LORDY TAGD_BACSU EFG_ANANI OTC2_ECOLI MASY_CORGL SYR_BRELA MAPR_PSEAE IFY_MYCGE THIL_CHRWI SAOX_STRSQ HLYX_ACTPL SYB_HAEIN SVD_BACST EFTU_ANANI SYB_BACCD SYB_ECOLI SYB_BACSU SYB_ECOLI SYB_BACSU SYB_BCOLI SYB_HAEIN NODB_AZOCA ASSB_MYCLE EFG_ANANI OTC2_ECOLI DAPD_ACTPL SYB_ECOLI SYB_							SYH_ECOLI	ACKA_HAEIN		
LEU3_HAEIN RNC_ECOLI RF3_HAEIN PTLA_LACCA ARAC_CITFR GJ91_ECOLI GJ91_ECOLI SYL_BCOLI THIL_CLOAB DAPD_ACTPL GJ92_BACCO SYL_BCOLI THA_LACCA ARAC_CITFR GJ91_ECOLI KAD_PARDE TYSY_ECOLI THIL_CLOAB VDH_STCO DAPD_ACTPL GJ92_BACCO SYL_BCOLI THOMASY_CORGL SYR_BRELA AMPR_PSEAE IFI_MYCBO PTKA_ECOLI SYD_MYCLE SYD_MYCLE SYD_MYCLE SYD_MYCLE SYD_MYCLE SYD_MYCLE SOD_ACTPL TO THE COLI SYD_MYCLE SYD_MYCLE SOD_ACTPL THE COLI SYD_MYCLE SYD_MYCLE SOD_ACTPL THE COLI SYD_ACTPL THE		DAPD_ECOLI	EFTU_ECOLI	CATR_PSEPU	CH10_ECOLI	KAD_HAEIN	OTC1_ECOLI	DTXR_CORDI	XYLS_PSEPU	TAGD_BACSU
LEU3_HABIN										
DAPD_ACTPL G3P_BACCO METC_BORAV PTH_ECOLI PTCA_ECOLI TREC_BACSU SYM_BECLA MASY_CORGL SYS_THETH PROB_SERMA TYSY_MYCGE THIL_CHRVI SAOX_STRSQ HLYX_ACTPL SYB_HAEIN SAOX_STRSQ HLYX_ACTPL SYB_HAEIN SYB_ECOLI SYB_STRMO NODB_RHILT NEWB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_STAPP NODB_RHILT NODB_RHILT NODB_RHILT NODB_RHILT NODB_RHILT NODB_RHILT NODB_RHILT N										
METC_BORAV PTH_ECOLI PTCA_ECOLI TFDR_ALCEU SYS_THETH PROB_SERMA IF1_ECOLI TF2_ENTFC RNC_MYCGE SAOX_ARTSP TYSY_MYCGE THIL_CHRVI SAOX_STRSQ HLYX_ACTPL ISPA_HAEIN SYV_BACST EFTU_ANANI CATA_PROMI GAL_PSEFL PHBB_ZOORA PROMI SAOX_STRSQ HLYX_ACTPL ISPA_HAEIN SYP_BCOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SELB_HAEIN NODB_AZOCA PILB_PSEAE PFLB_ECOLI ENO_ZYMMO SYA_HAEIN SYG_ECOLI DLDH_HAEIN SYGA_ECOLI SYB_ECOLI PAPX_ECOLI DN1_MYXXA THIL_ALCEU HOXY_ALCEU APT_ECOLI PAPX_ECOLI OTC2_ECOLI AACA_STAAU PGK_THETH NEUA_ECOLI DLDH_BACST GLPD_BACSU (2) 107 Extracellular prokaryotic proteins SPI_BACBR PRTB_ERWCH NPRE_BACCL PRT1_ERWCA DEXT_ARTSP GTFC_STRMU PROB_STRAG PRLB_ERWCH PELB_ERWCH NPRE_BACRN SYPA_STRCO PILS_ECOLI PAPX_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI SYB_ECOLI TFDT_ALCEU FOSB_STAEP NODB_RHILT DLDH_HAEIN SYGA_ECOLI DLDH_BACST GLPD_BACSU (2) 107 Extracellular prokaryotic proteins SPI_BACBR PRTB_ERWCH NPRE_BACST PRSG_ECOLI GTFB_STRMU STRAG_ECOLI PAPX_ECOLI PAPX_ECOLI PROKATE PROB_ECOLI PAPX_ECOLI PROKATE PROB_ECOLI PROKA										
TYSY_MYCGE THIL_CHRVI SAOX_STRSQ HLYX_ACTPL ISPĀ_HAEIN SYV_BACST EFTU_ANANI CATĀ_PROMI GAL_PSEFL PHBB_ZOORA MPR_RHOCA PEPE_SAITY EFT3_STRCO NODA_RHILT DLDH_HAEIN SYCA_ECOLI SYE_MYCGE ASPG_BACLI SELB_HAEIN NODB_AZOCA PILB_PSEAE PFLB_ECOLI EFG_ANANI O16G_BACSP EFTU_MICLU HPRT_BACSU PTWB_ECOLI SYE_ECOLI TFDT_ALCEU FOSB_STAEP MLER_LACILA PMBA_ECOLI DATA_PAY_ECOLI PAPX_ECOLI PAPX_ECOLI DCC2_ECOLI AACA_STAAU PGK_THETH NEUA_ECOLI DLDH_BACST GLPD_BACSU PTWB_ECOLI SYE_ECOLI TFDT_ALCEU FOSB_STAEP DLDH_BACST GLPD_BACSU PTWB_ECOLI TFDT_ALCEU FOSB_STAEP NDB_RHILT UVRR_ECOLI DLDH_BACST GLPD_BACSU PTWB_ECOLI TFDT_ALCEU FOSB_STAEP NDB_RHILT UVRR_ECOLI DLDH_BACST GLPD_BACSU PTWB_ECOLI SYE_ECOLI TFDT_ALCEU FOSB_STAEP NDB_RHILT UVRR_ECOLI AACA_STAED PGK_THETH NEUA_ECOLI DLDH_BACST GLPD_BACSU PTWB_ECOLI TFDT_ALCEU TFOSB_STAEP NDB_RHILT UVRR_ECOLI AACA_ERWCH NEUA_ECOLI DLDH_BACST GLPD_BACSU PRUS_ERWCH NEUA_ECOLI DLDH_BACST GLPD_BACSU PRUS_ERWCH NEUA_ECOLI DLDH_BACST GLPD_BACSU PRUS_ERWCH NEUA_ECOLI DLDH_BACST GLPD_BACSU PRUS_ERWCH PRUS_ERWCH PGK_THETH NEUA_ECOLI DLDH_BACST GLPD_BACSU PRUS_ERWCH PGK_THETH NEUA_ECOLI DLDH_BACST GLPD_				TFDR_ALCEU						
TREC_BACSU SYFB_ECOLI SUB_HAEIN NOB_AZOCA SYBB_ECOLI SUB_HAEIN NOBB_AZOCA PILB_PSEAE PFLB_ECOLI HPRT_BACSU HPRT_BACSU HPRT_BACSU HOXY_ALCEU HOXY_ALCEU HPRT_BACSU HOXY_ALCEU HOXY_ALCEU HOXY_ALCEU HOXY_ALCEU HOXY_ALCEU HOXY_ALCEU HOX	TYSY_MYCGE	THIL_CHRVI	SAOX_STRSQ	HLYX_ACTPL	ISPA_HAEIN	SYV_BACST	EFTU_ANANI	CATA_PROMI	GAL_PSEFL	PHBB_ZOORA
MER_LACLA PMBA_ECOLI LON1_MYXXA THIL_ALCEU HOXY_ALCEU APT_ECOLI APT_PSEST NODB_RHILT UVRB_ECOLI ACA_STABU PGK_THETH NEUA_ECOLI DLDH_BACST GLPD_BACSU (2) 107 Extracellular prokaryotic proteins SPI_BACBR PRTB_ERWCH NPER_BACST PRT1_ERWCA DEXT_ARTSP GTFC_STRMU PROB_STRAG PELF_ERWCH AWB_BACPO SNPA_STRCO PIL5_ECOLI PROB_STRAG PROB_ERWCH NC_SERMA PRTS_SERMA PRTS_SERWCH NPER_BACST STRK_STRG PROB_STRCO PIL5_ERWCH NC_SERMA PLA_BACSU PAPH_ECOLI LIPE_AERHY NPRB_BACM NPRB_BACSU N	TREC_BACSU			EFG_MYCLE						
MLER_LACLA MALQ_ECOLI										
MALQ_ECOLI PAPX_ECOLI OTC2_ECOLI AACA_STAAU PGK_THETH NEUA_ECOLI DLDH_BACST GLPD_BACSU (2) 107 Extracellular prokaryotic proteins SPI_BACBR PRTB_ERWCH THER_BACST PRSG_ECOLI GTFB_STRMU DRYNA_STRLI NPRE_BACCL PRT1_ERWCA DEXT_ARTSP GTFC_STRMU NPRE_BACBR PAPA_ECOLI SNPA_STRSQ RN_BACCO PHL_LEPIN PROB_STRAG PAPA_ECOLI SNPA_STRSQ PHR_LEPIN PRTS_SERMA PELF_ERWCH AWMB_BACPO SNPA_STRCO PHL_LEPIN PRTS_SERMA PELA_ERWCH AWMB_BACPO SNPA_STRCO PHL_ERWCH PRTS_SERMA PELA_ERWCH SUBS_BACSU LIP_PSESP PRSE_ECOLI PBB_ACSM NPRE_BACM NPRE_BACM NPRE_BACM NPRE_BACSM N										
SPI_BACBR PRTB_ERWCH THER_BACST PRSG_ECOLI GTFB_STRMU GTF1_STRDO CHOD_BREST HRPZ_PSESY NPRV_VIBPR EMPA_VIBAN YNVA_STRII NPRE_BACCL PRT1_ERWCA DEXT_ARTSP GFFC_STRMU NPRE_BACBR PAPA_ECOLI SNPA_STRSQ RN_BACCO PHL_LEPIN PROB_STRAG PELF_ERWCH AWYB_BACPO SNPA_STRCO PIL5_ECOLI PHL1_BACCE APRA_PSEAE LKTA_PASHA THET_THEVU A85B_MYCAV XYNC_PSEFL HRPN_ERWAM XYNC_STRII STRK_STRGR PELB_ERWCA SNPA_STRLI PROA_XANCP PRTS_SERMA PELL_BERWCH PELA_ERWCA PEL3_ERWCA SNPA_STRLI PROA_XANCP PRTB_BACSU AMT4_PSEST AMT4_PSEST SACB_STRMU DRNE_VIBCH NUCB_BACSU PAPA_ECOLI PHLB_LEPIN AMT4_PSEST SACB_STRMU DRNE_VIBCH NUCB_BACSU SUBF_BACSU LIP_PSESP PRSE_ECOLI PHB_ALCFA PEL1_ERWCA A85B_MYCAX AWTR_BACSB NPR_BACST NPRE_BACSU NPRE_BACSU LIP_PSESP PRSE_ECOLI PHB_ALCFA PEL1_ERWCA A85B_MYCAX AWTR_BACSB NPR_BACST NPRE_BACSU NPRE_BACSU NPRE_BACSU LIP_PSESP PRSE_ECOLI PHB_ALCFA PEL1_ERWCA A85B_MYCAX AWTR_BACSB NPR_BACST NPRE_BACSC SOBE_PLATEMED NOT COME_BACSU LIST_STAST TOPA_VIBCH BPRV_BACNO A85B_MYCLE EBA2_FLAME									OVRD_BCODI	Arthe_Entwell
XYNA_STRLI NPRE_BACCL PRT1_ERWCA DEXT_ARTSP GTFC_STRMU NPRE_BACBR PAPA_ECOLI SNPA_STRSQ RN_BACCO PHL_LEPIN PROB_STRAG PELF_ERWCH AWYB_BACPO SNPA_STRCO PIL5_ECOLI PHL1_BACCE APRA_PSEAL LKTA_PASHA THET_THEVU A85B_MYCAU SNPA_STRLI PROA_XANCP PRTA_ERWCH NUC_STRHI STRK_STRRR PELB_ERWCA SNPA_STRLI PROA_XANCP PRTA_ERWCH NUC_STRHY PRTS_SERMA PELA_ERWCH PELA_ERWCA PEL3_ERWCA SMP_SERMA PHL3_BACCE NPRE_BACSU AMT4_PSESA CHOD_STRSQ PRTG_ERWCH NUC_SERMA PELB_ERWCH NUC_SERMA PELB_ERWCH NUC_STRHY PIL1_SALTY PAPA_ECOLI PELB_ERWCH NPRE_BACSU NPRE_BACSU AMT4_PSESA CHOD_STRSQ PRTG_ERWCH NPRE_BACSU PAPA_ECOLI PELB_ERWCH NPRE_BACRM NPRM_BACME PIL1_ECOLI PBPA_STRPN LSTP_STAST AMT6_BACCS NPRE_BACSU SUBP_BACSU LTP_PSESP PRSE_ECOLI PBB_ALCFA PEL1_ERWCA A85B_MYCKA AWYR_BACSS NPRS_BACST NPRE_BACCS NPRE_BACCS SUBP_MYCTA A85B_MYCKA AWYR_BACSS NPRS_BACST NPRE_BACCS SUBP_MYCTA A85B_MYCKA A85B_MYCKA A85B_MYCKB BACKS SUBP_MYCLE EBA2_FLAME										
EBA3_FLAME XYNB_STRLI PELE_ERWCH BPRX_BACNO PRTC_ERWCH HLT_VIBPA PELD_ERWCH API_ACHLY SEPA_STAEP GTFD_STRMU PROB_STRAG PELF_ERWCH AMYB_BACPO SNPA_STRCO PIL5_ECOLI PHLI_BACCE APRA_PSEAE LKTA_PASHA THET_THEVU A85B_MYCAV PRTS_SERMA PELA_ERWCH VIC_STRLI STRK_STRGR PELB_ERWCA SNPA_STRLI PROA_XANCP PRTA_ERWCH NUC_STRLY PRTS_SERMA PELA_ERWCH SMP_SERMA PHL3_BACCE NPRE_BACSU AMT4_PSESA CHOD_STRSQ PRTG_ERWCH NUC_STRAY PILI_SALTY PRTS_BACSU PAPH_ECOLI PELB_ERWCH NPRE_BACAW NPRM_BACME PILI_ECOLI PBPA_STRPN LSTP_STRAST AMT6_BACST NPRE_BACSU SUBF_BACSU LIP_PSESP PRSE_ECOLI PBB_ALCFA PELI_ERWCA A85B_MYCKA AMYR_BACS8 NPRS_BACST NPRE_BACCE SOPF_MYCTU SUBV_BACSU LIP_PSESP COMX_BACSU ELAS_PSEAE PAPF_ECOLI LSTP_STASI TCPA_VIBCH BPRV_BACNO A85B_MYCLE EBA2_FLAME										
PROB_STRAG PELF_ERWCH AMYB_BACPO SNPA_STRCO PIL5_ECOLI PHLI_BACCE APRA_PSEAE LKTA_PASHA THET_THEVU A85B_MYCAV XYNC_PSEFL HAPN_ERWAM XYNC_STRLI STRK_STRGR PELB_ERWCA SNPA_STRLI PROA_XANCP PRTS_SERMA PELL_ERWCH PELA_ERWCA PEL3_ERWCA SMP_SERMA PHL3_BACCE NPRE_BACSU AMT4_PSEST AMT4_PSEST CHOD_STRSQ PRTG_ERWCH NUC_SERMA PEL_BACSU PAPH_ECOLI LIPE_AERHY EBA1_FLAME SUBF_BACSU AMT4_PSEST SACB_STRMU DRNE_UIBCH NUCB_BACSU PAPG_ECOLI PELB_ERWCH PELC_ERWCH NPRE_BACAM NPRM_BACME PIL1_ECOLI PBPA_STRPN LSTP_STAST AMT6_BACST RNBR_BACAM SUBV_BACSU LIP_PSESP PRS_ECOLI PHB_ALCFA PEL1_ERWCA A85B_MYCAX AMYR_BACSB NPRS_BACST NPRE_BACST NPRE_BACXB NPRE_BACST SUBE_BACSU LSTP_STAST TCPA_VIBCH BPV_BACNO A85B_MYCLE EBA2_FLAME										
XYNC_PSEFL HRPN_ERWAM XYNC_STRLI STRK_STRGR PELB_ERWCA SNPA_STRLI PROA_XANCP PRTA_ERWCH NUC_STAHY PIL1_SALTY PRTS_SERMA PELB_ERWCH PELB_ERWCH PELB_ERWCA SMP_SERMA PHLB_BACCE NPRE_BACSU AMT4_PSESA CHOD_STRSQ PRTG_ERWCH NUC_SERMA PELB_ERWCH PELB_ERWCH PELB_ERWCH PELB_ERWCH NPRE_BACAM NPRM_BACME PIL1_ECOLI PBPA_STRPN LSTP_STAST AMT6_BACST NPRE_BACSU PAPG_ECOLI PEBB_ERWCH PELB_ERWCH PBLB_ERWCH NPRM_BACME PIL1_ERWCA A85B_MYCKA A85B_MYCKA A87M_BACSS NPRS_BACST NPRE_BACCE SODF_MYCTU SUBV_BACSU LTP_PSESP PRSE_ECOLI PHB_ALCFA PELB_ERWCA SNPA_STRLI PROA_XANCP PRTA_ERWCH NUC_STAHY PIL1_SALTY PROA_XANCP PROA										
PRTS_SERMA PELA_ERWCH PELA_ERWCA PEL3_ERWCA SMP_SERMA PHL3_BACCE NPRE_BACSU AMT4_PSESA CHOD_STRSQ PRTG_ERWCH NUC_SERMA PEL_BACSU PAPH_ECOLI LIPE_AERHY EBA1_FLAME SUBF_BACSU AMT4_PSEST SACB_STRMU DRNE_VIBCH NUCB_BACSU PAPH_ECOLI PELB_ERWCH PELC_ERWCH NPRE_BACAM NPRM_BACME PIL1_ECOLI PBPA_STRPN LSTP_STAST AMT6_BACST NPRE_BACCM SUBF_MACSU LIP_PSESP PRSE_ECOLI PHB_ALCFA PEL1_ERWCA A85B_MYCKA AWYR_BACS8 NPRS_BACST NPRE_BACCE SOF_MYCTU SUBE_BACSU AGAR_STRCO COMX_BACSU ELAS_PSEAE PAPF_ECOLI LSTP_STASI TCPA_VIBCH BPRV_BACNO A85B_MYCLE EBA2_FLAME										
NUC_SERMA PEL_BACSU PAPH_ECOLI LIPE_ARRHY EBA1_FLAME SUBF_BACSU AMT4_PSEST SACB_STRMU DRNE_VIBCH NUCB_BACSU PAPG_ECOLI PELB_ERWCH PELC_ERWCH NPRE_BACAM NPRM_BACME PLIL_ECOLI PBPA_STRPN LSTP_STAST AMT6_BACS7 RNBR_BACAM SUBV_BACSU LIP_PSESP PRSE_ECOLI PBB_ALCFA PEL1_ERWCA A85B_MYCKA AMYR_BACS8 NPRS_BACST NPRE_BACCT NOFE_MYCTU SUBE_BACSU AGAR_STRCO COMX_BACSU ELAS_PSEAE PAPF_ECOLI LSTP_STASI TCPA_VIBCH BPRV_BACNO A85B_MYCLE EBA2_FLAME										
PAPG_ECOLI PELB_ERWCH PELC_ERWCH NPRE_BACAM NPRM_BACME PIL1_ECOLI PBPA_STRPN LSTP_STAST AMT6_BACS7 RNBR_BACAM SUBV_BACSU LIP_PSESP PRSE_ECOLI PHB_ALCFA PEL1_ERWCA A85B_MYCKA AMYR_BACS8 NPRS_BACST NPRE_BACCE SODF_MYCTU SUBE_BACSU AGAR_STRCO COMX_BACSU ELAS_PSEAE PAPF_ECOLI LSTP_STASI TCPA_VIBCH BPRV_BACNO A85B_MYCLE EBA2_FLAME					EBA1_FLAME					
SUBV_BACSU LIP_PSESP PRSE_ECOLI PHB_ALCFA PEL1_ERWCA A85B_MYCKA AMYR_BACS8 NPRS_BACST NPRE_BACCE SODF_MYCTU SUBE_BACSU AGAR_STRCO COMX_BACSU ELAS_PSEAE PAPF_ECOLI LSTP_STASI TCPA_VIBCH BPRV_BACNO A85B_MYCLE EBA2_FLAME	PAPG_ECOLI	PELB_ERWCH	PELC_ERWCH	NPRE_BACAM	NPRM_BACME	PIL1_ECOLI	PBPA_STRPN	LSTP_STAST	AMT6_BACS7	RNBR_BACAM
	SUBV_BACSU	LIP_PSESP								
ASDR WACRO AND FECOLIT WENT PACED DRUG TREAT PROPERTY CANA CANA ROLLE BROW TECHN							TCPA_VIBCH	BPRV_BACNO	A85B_MYCLE	EBA2_FLAME
	A85B_MYCBO	PAPE_ECOLI	MPK_BACSU	DKNE_AEKHY	PRTT_SERMA	CYAA_BORPE	PROA_LEGPN			

TABLE 1—Continued

(3) 202 Periplasmic prokaryotic proteins									
AGP_ECOLI	AZUR_PSEPU	FANE_ECOLI	PHEC_PSEAE	AMO_ECOLI	AZUP_METEX	TRAF_ECOLI	PHNS_DESVM	SODC_CAUCR	TBPA_ECOLI
MALM_ECOLI	PPA_ZYMMO	SPEA_ECOLI	PPB_SERMA	DHML_METEX	DHMH_PARDE	PHON_PROST	C553_BRAJA	DHET_ACEAC	DHM1_PARDE
PHFL_DESVH	TORA_ECOLI	NIR_PSESP	PRC_ECOLI	BLAC_RHOCA	OSMY_ECOLI	SUBI_SYNY3	PHON_SALTY	AZUR_ALCFA	SFUA_SERMA
FLGI_CAUCR	NIR_PSEAR	TRAW_ECOLI	HFB1_HAEIN	C552_BRAJA	FRDA_SHEPU	POTF_ECOLI	TRBB_ECOLI	FBP_HAEIN	AMY_THETU
PHNL_DESVM	PHNL_DESFR	MDOG_ECOLI	GALM_ACICA	CLPE_ECOLI	PHOC_MORMO	PBP7_ECOLI	KSD1_ECOLI	MYFB_YEREN	DCTP_RHOCA
COPC_PSESM	C552_PSEST	AZUR_ALCDE	AZUR_ALCSP	FECR_ECOLI	HELX_RHOCA	PHFS_DESVO	COPA_PSESM	AZUR_BORBR	PHSL_DESBA
NRFA_ECOLI	BRAC_PSEAE	NOSZ_PSEST	PAPJ_ECOLI	LOLA_ECOLI	HISJ_SALTY	TRH1_ECOLI	AZUR_PSEAE	C553_PARDE	ASG2_ECOLI
TESA_ECOLI	GLPQ_ECOLI	YTFQ_ECOLI	THTR_SYNP7	NANH_CLOPE	INH_PSEAE	C551_PSEST	C551_PSEAE	TCPG_VIBCH	DSBC_ECOLI
FLAA_SPIAU	NANH_CLOSE	TOLB_ECOLI	DHM2_PARDE	AZUR_PSEFD	C550_PSEST	GGT_ECOLI	OPPA_SALTY	AMO_KLEAE	PHNS_DESFR
DHM1_METEX	CYPH_ECOLI	CHVE_AGRTU	PHNS_DESGI	GUNB_PSEFL	FBP_NEIGO	RBSB_ECOLI	NANH_CLOSO	PHF1_CLOPA	AZUP_ALCFA
NIR_ALCFA	PAC_ECOLI	MODA_ECOLI	TREA_ECOLI	RHIC_RHILV	DHMH_THIVE	CGKA_ALTCA	NIRS_PSEAE	PROX_ECOLI	INH_ERWCH
LIVJ_CITFR	PHFS_DESVH	AZUR_PSEDE	OCCT_AGRT6	HTRA_ECOLI	ECPD_ECOLI	SUBI_SYNP7	TRAU_ECOLI	AMY1_ECOLI	SUFI_ECOLI
ALBR_KLEOX	PHSS_DESBA	UGPB_ECOLI	MEPA_ECOLI	C553_DESVM	LACE_AGRRD	CHMU_ERWHE	MALE_ECOLI	ARAF_ECOLI	FIMC_ECOLI
GLNH_ECOLI	DPPA_ECOLI	NIR_ACHCY	NOSD_PSEST	DGAL_CITFR	FEPB_ECOLI	OPPA_ECOLI	MODB_AZOVI	DHML_PARDE	PSTS_ECOLI
TRBC_ECOLI	AZU2_METJ	ICSB_SHIFL	CYSD_CHRVI	POTD_ECOLI	TBPA_HAEIN	PPA_ECOLI	LIVK_ECOLI	FLA1_BORBU	PICP_PSESP
FLA1_TREHY	PPB4_BACSU	ALGL_PSEAE	AZUR_PSEFB	CYSP_ECOLI	DHM1_METME	FER2_DESDN	AZUR_PSEFC	PHFL_DESVO	SODC_BRUAB
XYLF_ECOLI	PTR_ECOLI	C553_DESVH	DSBE_ECOLI	SODC_PHOLE	FLB2_TREHY	AZUP_ACHCY	RUS1_THIFE	PELP_ERWCA	E13B_OERXA
C553_DESDN	AZU1_METJ	NAPA_ALCEU	FLGI_SALTY	FECB_ECOLI	BGLX_ECOLI	DSBA_HAEIN	CN16_ECOLI	PRC_HAEIN	C562_ECOLI
PPB3_BACSU	USHA_ECOLI	DSBC_ERWCH	ECOT_ECOLI	DHGA_ACICA	MRKB_KLEPN	HEP1_FLAHE	NAPB_ALCEU	DHM2_METEX	PPB_ECOLI
PHNL_DESGI	NOSZ_PSEAE	NIRS_PSEST	CAFM_YERPE	SUBI_ECOLI	NUCM_ERWCH	DSBA_ECOLI	PAPD_ECOLI	PELP_YERPS	PPCE_FLAME
ARGT_SALTY	DHSU_CHRVI								

Note. The codes are according to the SWISS-PROT Data Bank.

protein \mathbf{X}_{k}^{ξ} of the ξ th subcellular location. The *standard vector* for the subcellular location ξ is defined by

$$\mathbf{X}^{\xi} = \begin{bmatrix} X_1^{\xi} \\ X_2^{\xi} \\ \vdots \\ X_{20}^{\xi} \end{bmatrix}, \quad (\xi = 1, 2, 3, \dots, m)$$
 [2]

where

$$x_i^{\xi} = \frac{1}{N_{\xi}} \sum_{k=1}^{N_{\xi}} x_{k,i}, \quad (i = 1, 2, ..., 20).$$

Suppose **X** is a protein whose subcellular location is to be predicted. It also corresponds to a point $(x_1, x_2, \ldots, x_{20})$ in the 20-D space, where x_i has the same meaning as $x_{k,i}^{\xi}$ but is associated with protein **X** instead of \mathbf{X}_{k}^{ξ} . Thus, the current algorithm can be formulated as follows.

The similarity between the standard vector \mathbf{X}^{ξ} and the protein \mathbf{X} is characterized by the Bayes discriminant function, as defined by [10]

$$F(\mathbf{X}, \mathbf{X}^{\xi}) = D^{2}(\mathbf{X}, \mathbf{X}^{\xi}) + \ln(\lambda_{2}^{\xi} \lambda_{3}^{\xi} \lambda_{4}^{\xi}, \dots, \lambda_{20}^{\xi}). \quad [4]$$

The first term is the squared Mahalanobis distance between \mathbf{X}^{ξ} and \mathbf{X} [4, 11]:

$$D^{2}(\mathbf{X}, \mathbf{X}^{\xi}) = (\mathbf{X} - \mathbf{X}^{\xi})^{T} \mathbf{C}_{\xi}^{-1} (\mathbf{X} - \mathbf{X}^{\xi}),$$

$$(\xi = 1, 2, 3, \dots, m) \quad [5]$$

where $\mathbf{C}_{\boldsymbol{\xi}}$ is the covariance matrix for subset $S^{\boldsymbol{\xi}}$, given by

$$\mathbf{C}_{\xi} = \begin{bmatrix} c_{1,1}^{\xi} & c_{1,2}^{\xi} & \cdots & c_{1,20}^{\xi} \\ c_{2,1}^{\xi} & c_{2,2}^{\xi} & \cdots & c_{2,20}^{\xi} \\ \vdots & \vdots & \ddots & \vdots \\ c_{2,2}^{\xi} & c_{2,2}^{\xi} & \cdots & c_{2,20}^{\xi} \end{bmatrix},$$
[6]

and the superscript \mathbf{T} is the transposition operator; $\mathbf{C}_{\boldsymbol{\xi}}^{-1}$ is the inverse matrix of $\mathbf{C}_{\boldsymbol{\xi}}$. The matrix elements $c_{i,j}^{\boldsymbol{\xi}}$ in eq.6 are given by

$$c_{i,j}^{\xi} = \frac{1}{N_{\xi} - 1} \sum_{k=1}^{N_{\xi}} \left[x_{k,i}^{\xi} - x_{j}^{\xi} \right] \left[x_{k,j}^{\xi} - x_{j}^{\xi} \right],$$

$$(i, j = 1, 2, \dots, 20). \quad [7]$$

Note that, different from the covariant matrices formulated in [4], a denominator $N_{\xi}-1$ is incorporated in the above equation. The second term of eq.4 reflects the difference of covariance matrices for different subcellular locations, in which λ_i^{ξ} is the *i*th eigenvalue of the covariance matrix \mathbf{C}_{ξ} ($i=2,3,4,\ldots,20$). It can be proved that, for the covariance matrix \mathbf{C}_{ε} as defined by eq.7, there are no negative eigenvalues. It can also be proven [9] that \mathbf{C}_{ξ} has one, and only one, eigenvalue (represented by λ_1^{ξ}) equal to zero; i.e., $\lambda_1^{\xi} = 0$. Incorporation of the term $\ln(\lambda_2^{\xi}\lambda_3^{\xi}\lambda_4^{\xi},\ldots,\lambda_{20}^{\xi})$ into the discriminant function, together with the denominator N_{ε} – 1 into the covariant matrices, is very important, especially when the subset sizes in the training dataset are much different [5]. It is because of the second term that the discriminant function F as defined by eq.4 is no longer a distance because it does not satisfy the condition of $F(\mathbf{X}, \mathbf{X}^{\xi}) = 0$ when $\mathbf{X} = \mathbf{X}^{\xi}$, and also it may have a negative value, obviously in conflict with the classical definition that a distance must satisfy positivity, symmetry, and the triangular inequality.

TABLE 2
Predicted Results for the Three Possible Subcellular Locations of the 997 Prokaryotic Proteins in Table 1

Test method	1. Cytoplasmic ^a	2. Extracellular ^a	3. Periplasmic ^a	Overall rate of correct prediction
Self-consistency	$\frac{643}{688} = 93.5\%$	$\frac{94}{107} = 87.9\%$	$\frac{164}{202} = 81.2\%$	$\frac{901}{997} = 90.4\%$
Jackknife	$\frac{630}{688} = 91.6\%$	$\frac{86}{107} = 80.4\%$	$\frac{146}{202} = 72.3\%$	$\frac{862}{997} = 86.5\%$

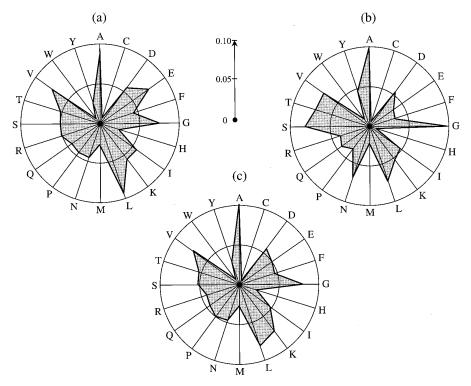
^a The number of proteins in this group has one or two proteins more than that of Table 1 of ref.6. This is because during the training process performed by Reinhardt and Hubbard all groups had to have a number of sequences dividable by three. As a consequence they left out 1 or two at the end of those groups if the number of proteins therein cannot be perfectly divided by three (personal communication with Dr. Reinhardt).

Thus, the prediction rule is formulated by

$$F(\mathbf{X}, \mathbf{X}^{\chi}) = \mathbf{Min}\{F(\mathbf{X}, \mathbf{X}^{1}),$$

$$F(\mathbf{X}, \mathbf{X}^{2}), F(\mathbf{X}, \mathbf{X}^{3}), \dots, F(\mathbf{X}, \mathbf{X}^{m})\} \quad [8]$$

where χ can be 1, 2, 3, ..., or m, and the operator **Min** means taking the least one among those in the parentheses, then the superscript χ of eq.8 is the predicted cellular location for the protein \mathbf{X} . If there is a tie case, ξ is not uniquely determined, but that did not occur in our dataset.


RESULTS AND DISCUSSION

To show the power of the current prediction algorithm, the comparison was made with the best result reported by the previous investigators. According to a recent report by Reinhardt and Hubbard [6], for the 997 prokaryotic proteins classified in three different subcellular locations (Table 1), the rate of correct prediction by the neural network method was 81%. This is the highest accuracy rate so far reported about the prediction of protein cellular location. Now for the same dataset, we used the discriminant function algorithm to perform prediction. The prediction quality

TABLE 3

The Standard Vector and Eigenvalue Set Derived from the Dataset of Table 1 for Each of the Three Subcellular Locations of Prokaryotic Proteins

	Stand	lard vector		Eigenvalue set			
Amino acid code	1. Cytoplasmic X ¹	2. Extracellular X ²	3. Periplasmic X ³	Order i	1. Cytoplasmic $\lambda_i^1 \times 10^5$	2. Extracellular $\lambda_i^2 \times 10^5$	3. Periplasmic $\lambda_i^3 \times 10^5$
A	0.089	0.098	0.106	1	0	0	0
C	0.010	0.007	0.012	2	0.5	0.7	0.6
D	0.060	0.058	0.061	3	4.2	2.7	4.9
E	0.075	0.037	0.050	4	6.1	4.3	8.7
\mathbf{F}	0.039	0.034	0.036	5	8.0	5.2	9.0
G	0.074	0.096	0.081	6	10.1	6.6	12.3
H	0.024	0.017	0.019	7	11.3	8.7	14.2
I	0.063	0.046	0.046	8	13.9	10.4	15.8
K	0.060	0.054	0.070	9	16.1	11.3	16.6
L	0.092	0.070	0.082	10	16.5	15.5	19.1
M	0.026	0.020	0.028	11	21.3	18.8	23.6
N	0.039	0.065	0.046	12	23.2	22.6	26.7
P	0.041	0.038	0.050	13	25.8	29.0	32.0
\mathbf{Q}	0.037	0.040	0.041	14	28.5	33.0	38.9
Ř	0.053	0.037	0.036	15	31.4	38.0	43.0
S	0.050	0.081	0.061	16	38.1	43.5	49.3
T	0.053	0.071	0.059	17	48.3	57.0	67.4
V	0.074	0.068	0.071	18	66.0	80.4	73.1
W	0.010	0.017	0.014	19	99.3	100.6	112.5
Y	0.029	0.044	0.032	20	146.0	148.7	128.3

FIG. 1. Radar diagrams to show the difference of the 20-D standard vectors, i.e. the average amino acid compositions which distinguish the subcellular locations of (a) cytoplasmic prokaryotic proteins, (b) extracellular prokaryotic proteins, and (c) peroplasmic prokaryotic proteins. Amino acids are denoted by their single-letter codes (see Table 3).

was examined by the standard testing procedure in statistics [12] that consists of the self-consistency and jackknife tests. In the former, the subcellular location for each protein in a given dataset was predicted using the parameters derived from the same dataset, the so-called training dataset; while in the latter, each protein in the training dataset was singled out in turn as a "test protein" and all the rule-parameters were derived from the remaining proteins. Compared with the independent dataset test and sub-sampling test often adopted in biology, the jackknife test is thought the most effective method for cross-validation in statistics [12]. This is because in the independent dataset test, the selection of a testing dataset is arbitrary, and the accuracy thus obtained lacks an objective criterion unless the testing dataset is sufficiently large [9]. As for the subsampling test in which a given dataset is divided into two or three subsets, the problem is that the number of possible divisions might be too large to be handled. For example, in the treatment by Reinhardt and Hubbard [6], proteins in each group of Table 1 were equally divided into three subgroups. Thus, the number of possible divisions would be $\Psi = \Psi_1 \times \Psi_2 \times 687!$ 105! Ψ_3 , where $\Psi_1 = \frac{687!}{229!229!229!}$, $\Psi_2 = \frac{105!}{35!35!35!}$, and $\Psi_3 = \frac{2011}{67!67!67!}$. Of Ψ_1 , Ψ_2 , and Ψ_3 , the smallest is Ψ_2

 $\simeq 9.8 \times 10^{47}$, indicating the number of possible divi-

sions would be $\Psi \gg 10^{141}!$ This is an astronomical figure, which is too large to be handled by any existing computers. Hence in any practical sub-sampling tests as carried out in [6], only a very small fraction of the possible divisions were investigated, and the results thus obtained would certainly bear considerable arbitrariness. Accordingly, the testing procedure adopted here is much more objective and rigorous.

The predicted results by self-consistency and jack-knife tests for the 997 proteins of Table 1 are given in Table 2, from which we can see that the overall rate of correct prediction is 90% by self-consistency test, and 87% by jackknife test. Both are considerably higher than the prediction accuracy of 81% obtained by the neural network method as reported in [6]. Likewise, better prediction quality was also obtained by using the current method for all the other datasets constructed for studying cellular location of proteins.

Therefore, from both the rationality of testing procedure and the accuracy of test results, the introduction of the discriminant function algorithm as presented in this paper can significantly improve the prediction quality.

To show the difference in amino acid compositions that distinguish the subcellular locations of proteins, the 20-D standard vector derived from the proteins in Table 1 for each of the three subcellular locations is given in Table 3. Meanwhile, to provide an intuitive

picture, each such 20-D standard vectors is projected onto a 2-D radar diagram as given in Fig.1. Furthermore, the 20 eigenvalues for each of the three corresponding covariance matrices are also given in Table 3 that might be of use for investigating the componentcoupled effects at a deeper level, especially for understanding the important contribution from the second term of eq.4. This is a vitally important term for dealing with the case where the sizes of subsets are different. However, such an important term as well as the denominator $N_{\xi}-1$ in eq.7 were not included in the original least Mahalanobis distance algorithm [4] although good results were still yielded because the case studied there consisted of the same-sized subsets. It is very important to realize this; otherwise, the prediction algorithm might be misused, leading to poor results and an incorrect conclusion.

The essence of the discriminant function algorithm is in the covariance matrix (eq.6), which reflects the collective interactions among different amino-acid components of a protein that actually dictate its final folding state or conformation. On the other hand, different subcellular compartments will provide different optimal environments for some special protein conformations. It is based on such an internal relationship that the current prediction algorithm is established. It is anticipated that with continuously updating the training dataset by incorporating more protein sequences and increasing the accuracy of locational classification, the prediction quality will be further improved. Since the possible function of a protein is restricted by its subcellular location, the powerful prediction algorithm

developed here may become a useful vehicle for systematic analysis of the wealth of rapidly increasing data being provided by large scale genome projects.

ACKNOWLEDGMENT

The authors are indebted to Dr. A. Reinhardt for providing the data of Table 1 for testing the discriminant function algorithm.

REFERENCES

- 1. Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B.-C., and Herrmann, R. (1996) *Nucleic Acids Res.* **24**, 4420–4449.
- Nakashima, H., and Nishikawa, K. (1994) J. Mol. Biol. 238, 54-61
- Cedano, J., Aloy, P., Pérez-pons, J. A., and Querol, E. (1997) J. Mol. Biol. 266, 594-600.
- 4. Chou, K. C. (1995) Proteins: Structure, Function and Genetics 21, 319–344.
- Chou, K. C., Liu, W., Maggiora, G. M., and Zhang, C. T. (1998) Proteins: Structure, Function and Genetics 31, 97–103.
- Reinhardt, A., and Hubbard, T. (1998) Nucleic Acids Res. 26, 2230–2236.
- King, R. D. (1996) In Sternberg, M. J. E. (Ed.), Protein Structure Prediction: A Practical Approach, IRL Press, Oxford, pp. 79–97.
- 8. Rost, B., Casadio, R., Fariselli, P., and Sander, C. (1995) *Protein Science* 4, 521–533.
- 9. Chou, K. C., and Zhang, C. T. (1995) Critical Reviews in Biochemistry and Molecular Biology 30, 275–349.
- Duda, R. O., and Hart, P. E. (1973) Pattern Classification and Scene Analysis, Chap.2, John Wiley & Sons, New York.
- 11. Mahalanobis, P. C. (1936) Proc. Natl. Inst. Sci. India 2, 49-55
- Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979) Multivariate Analysis, pp. 322, 381, Academic Press, London.